Toán 10 Bất Đẳng Thức – Tổng hợp kiến thức và hướng dẫn giải bài

Toán 10 Bất Đẳng Thức – Tổng hợp kiến thức và hướng dẫn giải bài

Bat dang thuc

Video Bat dang thuc

Giúp bạn dễ nhớ bài toán về 10 bất đẳng thức. Các bài sau sẽ tổng hợp chi tiết lý thuyết và hướng dẫn giải cụ thể các bài liên quan. Hãy làm theo.

Bạn Đang Xem: Toán 10 Bất Đẳng Thức – Tổng hợp kiến thức và hướng dẫn giải bài

Tôi. Hệ thống lý thuyết Toán 10 Bài 1 Không thực tế

Bất đẳng thức là một trong những kiến ​​thức cơ bản của chương trình toán học lớp 10 nên hôm nay Thầy Kiến muốn đưa phần lý thuyết cơ bản này đến bạn đọc. Ngoài việc xem xét lý thuyết, bài viết này sẽ đưa ra một số ví dụ minh họa để bạn làm quen với phương pháp thử nghiệm. Cùng Master Ant tìm hiểu nhé.

A. xem xét vô thức

1. Khái niệm bất đẳng thức

Mệnh đề có dạng “a > b” hoặc “a> b” được gọi là một bất đẳng thức.

2. Bất đẳng thức tương ứng và bất đẳng thức tương đương

Nếu mệnh đề “a > b => c > d” đúng thì ta nói bất đẳng thức c>;d là kết quả của bất đẳng thức a > bất đẳng thức b và viết a > b => c > d .

Nếu bất đẳng thức a > b là hệ quả của bất đẳng thức c > d và ngược lại thì ta nói hai bất đẳng thức bằng nhau và viết a > b c > d.

3. Tính chất của bất đẳng thức

Như vậy để chứng minh bất đẳng thức a > b ta chỉ cần chứng minh a – b > ;

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý

Ta cũng gặp mệnh đề dạng a ≤ b hoặc a ≥ b. Loại tuyên bố này còn được gọi là bất đẳng thức. Để phân biệt chúng ta gọi chúng là các bất đẳng thức không nghiêm ngặt và các bất đẳng thức dạng a < b hoặc a > b là các bất đẳng thức nghiêm ngặt. Các tính chất cho trong bảng trên cũng áp dụng cho bất đẳng thức không nghiêm ngặt.

b. Trung bình và Bất bình đẳng trung bình (Bất bình đẳng Cosine)

1. Bất đẳng thức cosin

Lý thuyết

Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình nhân của chúng

Dấu bằng xảy ra khi và chỉ khi a = b.

2. hậu quả

Kết quả 1

Tổng của một số dương và nghịch đảo của nó lớn hơn hoặc bằng 2.

a + ≥ 2,∀a > 0.

Kết quả 2

Nếu x và y đều là hai số dương và tổng của chúng không đổi thì tích của xy là lớn nhất khi và chỉ khi x = y.

Kết quả 3

Nếu cả x và y đều dương và tích không đổi thì tổng của x + y là nhỏ nhất khi và chỉ khi x = y.

c. Bất đẳng thức có dấu giá trị tuyệt đối

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hai. Câu đố Câu 10 sgk bất đẳng thức

Qua hệ thống kiến ​​thức trên chắc hẳn các em đã nhớ thêm được nhiều kiến ​​thức về bản chất và phương pháp giải các bài toán liên quan đến bất đẳng thức rồi đúng không? Vì vậy, bây giờ chúng ta hãy cùng nhau làm việc trên các chi tiết cụ thể!

1. Bài 1 (SGK Đại số 10 tr. 79)

Mệnh đề nào sau đây đúng với mọi giá trị của x?

a) 8x > 4 lần; b) 4x > 8 lần

c) 8×2 > 4×2 ; d) 8 + x > 4 + x

Giải pháp

a) Vì 8 > 4 nên 8x > 4x nếu x > 0. Vậy mệnh đề đúng nếu x > 0 và sai nếu .

b) Vì 4 8x nếu x < 0. Vậy mệnh đề đúng nếu x <;0 và sai nếu .

c) Nếu x = 0 ta có 8.02 > 4.02 hoặc 0 > 0 (vô lý). Nếu x = 0 thì suy ra mệnh đề sai.

Nếu thì bất đẳng thức luôn đúng.

Vậy mệnh đề đúng với mọi x 0.

d) Mệnh đề này luôn đúng vì 8 >; 4 nên 8 + x > 4 + x với mọi số thực x.

Xem Thêm: Soạn bài Lão Hạc Soạn văn 8 tập 1 bài 4 (trang 38)

Khi đó khẳng định d đúng với mọi giá trị của x.

2. Bài 2 (SGK Đại số 10 trang 79)

Với số x > 5 thì số nào nhỏ nhất trong các số sau?

Giải pháp

Với mọi x ≠ 0 ta luôn có: – 1 <;0 < 1. Do đó,

hoặc c <a<b.

Có x > 5 ⇒ x2 > 52 (bình phương ở cả hai vế)

⇒ (nhân cả hai vế của bất đẳng thức với )

Vậy ta có c < a < b và c < a < d nên trong 4 số trên c là số nhỏ nhất.

3. Bài 3 (SGK Đại số 10 trang 79)

Gọi a, b, c là độ dài các cạnh của tam giác.

a) chứng minh (b – c)2 <; a2

Xem Thêm : Bài thơ Xa ngắm thác núi Lư Tác giả Lý Bạch

b) Từ đây suy ra: a2 + b2 + c2 <; 2(ab + bc + ca)

Giải pháp

a) vì a,b,c là độ dài các cạnh của tam giác

⇒ a + c > b và a + b > c (bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 <; a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (dpcm)

b) Chứng minh tương tự phần a), ta có:

(a – b)2 <; c2(2)

(c – a)2 <; b2 (3)

Cộng ba bất phương trình (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 <; a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 <; a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (dpcm).

4. Bài 4 (SGK Đại số 10 trang 79)

Bằng chứng:

x3 + y3 x2y + xy2, x, y 0

Giải pháp

Vì x 0, y 0, x + y 0.

Xem Thêm: Những bài phát biểu tại đại hội chi đoàn

X3 + y3 x2y + xy2

⇔ x3 + y3 – x2y – xy2 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) 0

⇔ (x + y)(x – y)2 0.

Vì (x – y)2 ≥ 0 với mọi x, y và x + y ≥ 0 (cmt)

Vậy (x + y)(x – y)2 ≥ 0 luôn đúng.

Vậy x3 + y3 ≥ x2y + xy2 trong đó x ≥ 0 và y ≥ 0.

5. Bài 5 (SGK Đại số 10 tr. 79)

Bằng chứng:

Giải pháp

Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)

+) nếu t = 0 hoặc t = 1 thì f(t) = 1 > 0

+) và 0 <; t < 1,

f(t) = t8 + (t2 – t5) + 1 – t

t8> 0; 1-t> 0; t2 – t5 = t2(1 – t3) > 0

Suy ra f(t) > 0.

+) với t > 1 thì t – 1 > 0. Vậy f(t) = t5(t3 – 1) + t(t – 1) + 1 > 0

6. Bài 6 (SGK Đại số 10 tr. 79)

Trong mặt phẳng tọa độ Oxy, lấy các điểm a, b lần lượt thuộc các tia ox, oy sao cho đường thẳng ab luôn cắt tâm o và đường tròn có bán kính bằng 1. Xác định tọa độ của a và b sao cho độ dài đoạn thẳng ab nhỏ nhất.

Giải pháp

Gọi h là tiếp tuyến của đường thẳng ab và đường tròn tâm o. Sau đó: ồ, ab.

+ Xét tam giác vuông aob tại o, trong đó oh là chiều cao nên ha.hb = oh2 = 12 = 1

Xem Thêm : Giải Hóa 12 Bài 28: Luyện tập SGK trang 132 (Đầy đủ nhất)

Khi đó chiều cao và đường trung tuyến của ∆oab đều là ồ nên tam giác cân tại o nên oa = ob và ab = 2.

+ Áp dụng định lý py – ta – go cho tam giác vuông oab ta có:

word image 32969 16

Ba. Gợi ý một số bài tập sbt

Với sự trợ giúp của các cách giải cụ thể trong SGK, các em đã biết cách giải và phương pháp giải cụ thể rồi đúng không? Và để vận dụng các kiến ​​thức đã học một cách thuần thục hơn, chúng ta hãy cùng nhau giải các bài tập liên quan trong nội dung sách bài tập nhé!

1. Sách bài tập Đại số 10 Bài 4.1 Trang 103

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

2. Bài 4.2 Trang 103 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

3. Bài 4.3 Trang 104 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

4. Bài 4.4 Trang 104 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

5. Bài 4.5 Trang 104 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

6. Sách bài tập Đại số 10 Bài 4.6 Trang 104

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

7.Bài 4.7 Trang 104 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

8.Bài 4.8 Trang 104 Sách bài tập Đại số 10

Cho a, b, c, d là các số dương; x, y, z là các số thực bất kỳ. Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

9.bài 4.9 trang 104 sách bài tập đại số 10

Tìm giá trị nhỏ nhất của hàm số

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Phương trình y = 25 khi và chỉ khi

hoặc x = 2/5

Vậy giá trị nhỏ nhất của hàm số đã cho là 25 tại x =

10. Bài 4.10 Trang 104 Sách bài tập Đại số 10

Tìm giá trị lớn nhất của hàm số

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy khi x = 3 thì giá trị lớn nhất của hàm số đã cho bằng 27.

11. Bài 4.11 Trang 104 Sách bài tập Đại số 10

Tìm giá trị lớn nhất, nhỏ nhất của các hàm số sau trên tập xác định của chúng

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Vế phải có nghĩa khi 1 ≤ x ≤ 5

Giải sách bài tập Toán 10 | Giải sbt Toán 10 Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy khi x = 3 thì giá trị lớn nhất của hàm số đã cho bằng 2√2 và khi x = 1 hoặc x = 5 thì giá trị nhỏ nhất của hàm số đã cho bằng 2.

12. Bài 4.12 Trang 104 Sách bài tập Đại số 10

Bằng chứng:

Xem Thêm: Chùa Cổ Lễ và huyện thoại về 27 nhà sư “cởi áo cà sa khoác chiến

Giải pháp thay thế:

Bốn. Kết luận

Trên đây là phần tổng hợp và mô tả chi tiết cách giải một số bài toán về bất đẳng thức cho các bạn. Hy vọng những thông tin trên sẽ giúp ích cho bạn trong quá trình học tập.

Hy vọng qua bài viết này các bạn đã có thể ôn tập, củng cố lại kiến ​​thức đã học, đồng thời rèn luyện tư duy tìm tòi và đưa ra cách giải cho từng bài toán. Học tập là một quá trình tích lũy và thử nghiệm không ngừng. Để biết thêm nhiều điều bổ ích, mời các bạn tham khảo thêm các bài viết khác trên trang Ant Master. Chúc may mắn với các nghiên cứu của bạn!

Nguồn: https://anhvufood.vn
Danh mục: Giáo Dục