Phương trình và hệ phương trình bậc nhất nhiều ẩn
Có thể bạn quan tâm
Dạng toán 1: Giải phương trình bậc hai hai ẩn, ba
Giải pháp
Bạn Đang Xem: Toán 10 Bài 3: Phương trình và hệ phương trình bậc nhất nhiều ẩn
Sử dụng phép cộng, phép thế, định thức đại số.
Ví dụ 1:
Giải hệ phương trình sau:
a) \(\left\{ \begin{array}{l}5x – 4y = 3\\7x – 9y = 8\end{array} \right.\)
b) \(\left\{ \begin{array}{l}2x + y = 11\\5x – 4y = 8\end{array} \right.\)
Mô tả:
a) Ta có \(d = \left| {\begin{array}{*{20}{c}}5&{ – 4}\\7&{ – 9}\ end{array}} \right| = – 17\), \({d_x} = \left| {\begin{array}{*{20}{c}}3&{- 4} \8&{ – 9}\end{array}} \right| = 5,\,\,{d_y} = \left| {\begin{array}{*{20}{ c}}5&3\\7&8\end{array}} \right| = 19\)
Suy ra nghiệm là \(\left( {x;y} \right) = \left( {\frac{{{{d_x}}}{d};\frac {{{ d_y }}}{d}} \right) = \left( { – \frac{5}{{17}}; – \frac{{19}}{{17}}} right) )
b) Ta có \(d = \left| {\begin{array}{*{20}{c}}2&1\\5&{ – 4}\end{array }} \right| = – 13\), \({d_x} = \left| {\begin{array}{*{20}{c}}{11}&1\\ 8&{ – 4}\end{array}} \right| = – 52,\,\,{d_y} = \left| {\begin{array}{*{20}{c} }2&{11}\\5&8\end{array}} \right| = – 39\)
Suy ra nghiệm là \(\left( {x;y} \right) = \left( {\frac{{{{d_x}}}{d};\frac {{{ d_y }}}{d}} \right) = \left( {4;3} \right)\)
Ví dụ 2:
Giải hệ phương trình sau:
Xem Thêm: Kể Về Một Lần Em Mắc Lỗi Lớp 9 ❤️️ 15 Bài Văn Ngắn Hay
a) \(\left\{ \begin{array}{l}(x + 3)y – 5) = xy\\(x – 2)(y + 5) = xy \end{array} \right.\)
b) \(\left\{ \begin{array}{l}\left| {x – y} \right| = \sqrt 2 \\2x – y = – 1\end{array} \right.\)
Xem Thêm : Web 3.0 là gì? Tìm hiểu chi tiết về Web 3.0 – Kỷ nguyên mới của Internet (Phần 1)
c) \(\left\{ \begin{array}{l}\frac{{3(x + y)}}{{x – y}} = – 7\\ \frac{{5x – y}}{{y – x}} = \frac{5}{3}\end{array} \right.\)
Mô tả:
a) tương đương với \(\left\{ \begin{array}{l}xy – 5x + 3y – 15 = xy\\xy + 5x – 2y – 10 = xy \ kết thúc{mảng} \right.\)
\( \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ – 5x + 3y = 15}\\{5x – 2y = 10} \end{array}} \right \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = 25}\\{5x – 2y = 10 }\end{array}} \right \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 12}\\{y = 25} \end{array}} \right.\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {12;25} \right)\)
b) Tương đương với \(\left\{ \begin{array}{l}x – y = \pm \sqrt 2 \\2x – y = – 1 end { mảng} \right.\)
\( \leftrightarrow \left\{ \begin{array}{l}x – y = \sqrt 2 \\2x – y = – 1\end{array} \ Đúng.\) (1) hoặc \(\left\{ \begin{array}{l}x – y = – \sqrt 2 \\2x – y = – 1\end{ mảng} \right.\) (2)
Ta có \(\left( 1 \right) \leftrightarrow \left\{ \begin{array}{l}x = – 1 – \sqrt 2 \\2x – y = – 1\end{array} \right \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = – 1 – \sqrt 2 } \{y = – 1 – 2\sqrt 2 }\end{array}} \right.\)
\(\left( 2 \right) \leftrightarrow \left\{ \begin{array}{l}x = – 1 + \sqrt 2 \\2x – y = – 1\end{array} \right \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = – 1 – \sqrt 2 }\ {y = – 1 + 2\sqrt 2 }\end{array}} \right.\)
Xem Thêm: Soạn bài Thực hành về thành ngữ, điển cố | Ngắn nhất Soạn văn 11
Vậy hệ phương trình có nghiệm\(\left( {x;y} \right)\) là \(\left( { – 1 – \sqrt 2 ; – 1 – 2 sqrt 2 } \right)\) và \(\left( { – 1 – \sqrt 2 ; – 1 + 2\sqrt 2 } \right)\)
c) Định nghĩa: \(x \ne y\)
Tương đương với \(\left\{ \begin{array}{l}3(x + y) = – 7\left({x – y} \right) \ 3 \left( {5x – y} \right) = 5\left( {y – x} \right)\end{array} \right.\)
\( \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{10x – 4y = 0}\\{20x – 8y = 0} end{array}} \right \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0} end{array}} \right.\) (không hài lòng)
Vậy hệ phương trình vô nghiệm.
Dạng toán 2: Giải và thảo luận về phương trình bậc hai hai ẩn
Giải pháp thay thế:
Xem Thêm : Trạng từ chỉ tần suất phổ biến nên biết trong tiếng Anh
Sử dụng định thức: tính \(d,\,{d_x},\,{d_y}\)
\( \bullet \) Nếu \(d \ne 0\) thì hệ có nghiệm duy nhất\(\left( {x;y} \right) = \ trái( {\frac{{{d_x}}}{d};\frac{{{d_y}}}{d}} \right)\)
\( \bullet \) nếu \(d = 0\) thì xét \({d_x},\,{d_y}\)
Với \(\left[ {\begin{array}{*{20}{c}}{{d_x} \ne 0}\\{{d_y} \ne 0} end{array}} \right.\) thì phương trình vô nghiệm
Xem Thêm: Chữ Ký Tên Cúc Phong Thủy ❤️️ Mẫu Chữ Kí Tên Cúc Đẹp
với \({d_x} = {d_y} = 0\) Khi đó hệ phương trình có vô số nghiệm và tập nghiệm của hệ phương trình chính là tập nghiệm của một trong hai phương trình.
Ví dụ:
Giải và chứng minh hệ phương trình: \(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array } Có.\)
Mô tả:
Ta có \(d = \left| {\begin{array}{*{20}{c}}m&{ – 1}\\4&{ – m}\end{ mảng}} \right| = 4 – {m^2} = \left( {2 – m} \right)\left( {2 + m} \right)\)
\({d_x} = \left| {\begin{array}{*{20}{c}}{2m}&{ – 1}\\{m + 6}& { – m}\end{array}} \right| = – 2{m^2} + m + 6 = \left( {2 – m} \right)\left( {2m + 3} \right)\) \({d_y} = \left| {\begin{array}{*{20}{c}}m&{2m}\\4&{m + 6} \end{array}} \right| = {m^2} – 2m = m\left( {m – 2} \right)\)
- Với \({\rm{d}} \ne 0 \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m ne 2}\\{m \ne – 2}\end{array}} \right.\): hệ phương trình\(\left( {x;y} right) = \left( {\frac{{{d_x}}}{d};\frac{{{d_y}}}{d}} \right) = \left( {\frac {{2m + 3}}{{2 + m}}; – \frac{m}{{2m + 1}}} \right)\)
- Sử dụng \({\rm{d = }}0 \leftrightarrow m = \pm 2\):
+ Khi \(m = 2\) ta có \({\rm{d}} = {d_x} = {d_y} = 0\) nên hệ phương trình có nghiệm ( 2x – y = 4 \leftrightarrow y = 2x – 4\). Vậy hệ phương trình có nghiệm \(\left({x;y}\right) = \left({t;2t – 4}\right),\,\,t \ in r \).
+ Khi \(m = – 2\) ta có \(d = 0,\,{d_x} \ne 0\) nên hệ phương trình vô nghiệm
Kết luận
Hệ phương trình \(m \ne 2\) và \(m \ne – 2\) có nghiệm duy nhất\(\left( {x;y} \right ) = \left( {\frac{{2m + 3}}{{2 + m}}; – \frac{m}{{2m + 1}}} \right)\)
Nghiệm của \(m = 2\) hệ phương trình là \(\left( {x;y} \right) = \left( {t;2t – 4} \right ) , \,\,t \in r\).
\(m = – 2\) hệ phương trình vô giải
Nguồn: https://anhvufood.vn
Danh mục: Giáo Dục