Giải bài 21, 22, 23, 24, 25, 26 trang 17 sgk toán 8 tập 2

Giải bài 21, 22, 23, 24, 25, 26 trang 17 sgk toán 8 tập 2

Toán 8 tập 2 trang 17

Video Toán 8 tập 2 trang 17

Bài 21 Trang 17 SGK Toán 8 Tập 2

Bạn Đang Xem: Giải bài 21, 22, 23, 24, 25, 26 trang 17 sgk toán 8 tập 2

Giải phương trình:

a) (3x – 2)(4x + 5) = 0; b) (2,3x – 6,9)(0,1x + 2) = 0;

c) (4x + 2)(x2 + 1) = 0; d) (2x + 7)(x – 5)(5x + 1) = 0;

Hướng dẫn giải pháp:

a) (3x – 2)(4x + 5) = 0

⇔ 3x – 2 = 0 hoặc 4x + 5 = 0

1) 3x – 2 = 0 ⇔ 3x = 2 ⇔ x = \( \frac{2}{3}\)

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = \( -\frac{5}{4}\)

Vậy phương trình có tập nghiệm s = \( \left \{ \frac{2}{3};\frac{-5}{4} \right \}\) .

b) (2,3x – 6,9)(0,1x + 2) = 0

⇔ 2,3x – 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x – 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập nghiệm s = {3;-20}

c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = \( -\frac{1}{2}\)

2) x2 + 1 = 0 ⇔ x2 = -1 (vô nghĩa, vì x2 ≥ 0)

Vậy phương trình có tập nghiệm s = \( \left \{ -\frac{1}{2} \right \}\).

d) (2x + 7)(x – 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x – 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = \( -\frac{7}{2}\)

2) x – 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = \( -\frac{1}{5}\).

Vậy phương trình có tập nghiệm s = \( \left \{ -\frac{7}{2};5;-\frac{1}{5} \right \ } )

Bài 22 Trang 17 SGK Toán 8 Tập 2

Giải phương trình sau bằng cách nhân vế trái:

a) 2x(x – 3) + 5(x – 3) = 0 b) (x2 – 4) + (x – 2)(3 – 2x) = 0

c) x3 – 3×2 + 3x – 1 = 0; d) x(2x – 7) – 4x + 14 = 0

e) (2x – 5)2 – (x + 2)2 = 0; f) x2 – x – 3x + 3 = 0

Hướng dẫn giải pháp:

a) 2x(x – 3) + 5(x – 3) = 0 ⇔ (x – 3)(2x + 5) = 0 ⇔ x – 3 = 0 hoặc 2x + 5 = 0

1) x – 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là s = ​​{3;-2,5}

b) (x2 – 4) + (x – 2)(3 – 2x) = 0 (x – 2)(x + 2) + (x – 2)(3 – 2x) = 0

⇔ (x – 2)(x + 2 + 3 – 2x) = 0 ⇔ (x – 2)(-x + 5) = 0 ⇔ x – 2 = 0 hoặc -x + 5 = 0

1) x – 2 = 0 ⇔ x = 2

2) -x + 5 = 0 x = 5

Vậy tập nghiệm của phương trình là s = ​​{2;5}

Xem Thêm: Giải bài tập Toán lớp 4 trang 84 Luyện tập đầy đủ nhất

c) x3 – 3×2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x – 7) – 4x + 14 = 0 ⇔ x(2x – 7) – 2(2x – 7) = 0

⇔ (x – 2)(2x – 7) = 0 ⇔ x – 2 = 0 hoặc 2x – 7 = 0

1) x – 2 = 0 ⇔ x = 2

2) 2x – 7 = 0 ⇔ 2x = 7 ⇔ x = \( \frac{7}{2}\)

Vậy tập nghiệm của phương trình là s = ​​{2;\( \frac{7}{2}\)}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x – 5 – x – 2)(2x – 5 + x + 2) = 0

⇔ (x – 7)(3x – 3) = 0 ⇔ x – 7 = 0 hoặc 3x – 3 = 0

1) x – 7 = 0 x = 7

2) 3x – 3 = 0 ⇔ 3x = 3 x = 1

f) x2 – x – 3x + 3 = 0 ⇔ x(x – 1) – 3(x – 1) = 0 ⇔ (x – 3)(x – 1) = 0

⇔ x = 3 hoặc x = 1

Xem Thêm : Tổng hợp các loại lực ma sát và ứng dụng của lực ma sát trong đời

Vậy tập nghiệm của phương trình là s = ​​{1;3}

Bài 23 Trang 17 SGK Toán 8 Tập 2

Giải phương trình:

a) \(x\left( {2x – 9} \right) = 3x\left( {x – 5} \right)\)

b) \(0,5x\left({x – 3} \right) = \left({x – 3} \right)\left({1,5x – 1} \right )\)

c) \(3x – 15 = 2x\left( {x – 5} \right)\)

d) \({3 \ trên 7}x – 1 = {1 \ trên 7}x\left( {3x – 7} \right).\)

Hướng dẫn:

a) \(x\left( {2x – 9} \right) = 3x\left( {x – 5} \right)\)

⇔\(x\left( {2x – 9} \right) – 3x\left( {x – 5} \right) = 0\)

⇔\(x\left( {2x – 9 – 3x + 15} \right) = 0\)

⇔\(x\left( {6 – x} \right) = 0\)

⇔\(\left[ {\ma trận{{x = 0} \cr {6 – x = 0} \cr} } \right.\leftrightarrow \left[ {\ ma trận {{x = 0} \cr {x = 6} \cr} } \right.\)

Vậy tập nghiệm s ={0;6}.

b) \(0,5x\left({x – 3} \right) = \left({x – 3} \right)\left({1,5x – 1} \right )\)

⇔\(0,5x\left({x – 3} \right) – \left({x – 3} \right)\left({1,5x – 1} \right) = 0\)

⇔\(\left({x – 3} \right)\left({1 – x} \right) = 0\)

⇔\(\left[ {\ma trận{{x – 3 = 0} \cr {1 – x = 0} \cr} } \right. \leftrightarrow \left[ { \ma trận{{x = 3} \cr {x = 1} \cr}} \yes.\)

Vậy tập nghiệm s = {1;3}.

c) \(3x – 15 = 2x\left( {x – 5} \right)\)

⇔\(0 = 2x\left( {x – 5} \right) – \left( {3x – 15} \right)\)

⇔ \(0 = 2x\left( {x – 5} \right) – 3\left( {x – 5} \right)\)

⇔\(0 = \left( {x – 5} \right)\left( {2x – 3} \right)\)

⇔\(\left[ {\ma trận{{x – 5 = 0} \cr {2x – 3 = 0} \cr} } \right. \leftrightarrow \left[ { \ma trận{{x = 5} \cr {x = {3 \trên 2}} \cr} } \right.\)

Vậy một tập hợp các nghiệm \(s = \left\{ {5;{3 \trên 2}} \right\}\)

d) \({3 \ trên 7}x – 1 = {1 \ trên 7}x\left( {3x – 7} \right)\)

⇔\(\left( {{3 \ trên 7}x – 1} \right) – {1 \ trên 7}x\left( {3x – 7} \right) = 0\)

⇔\({1 \ trên 7}\left( {3x – 7} \right) – {1 \ trên 7}x\left( {3x – 7} \right) = 0\)

Xem Thêm: Lỗ Tấn: Người soi đường cho dân tộc Trung Hoa 

⇔\({1 \ trên 7}\left( {3x – 7} \right)\left( {1 – x} \right) = 0\)

⇔\(\left[ {\ma trận{{1 – x = 0} \cr {3x – 7 = 0} \cr} } \right. \leftrightarrow \left[ { \ma trận{{x = 1} \cr {x = {7 \trên 3}} \cr} } \right.\)

Vậy tập nghiệm \(s = \left\{ {1;{7 \trên 3}} \right\}\) .

Bài 24 Trang 17 SGK Toán 8 Tập 2

Giải phương trình:

a) \(\left( {{x^2} – 2x + 1} \right) – 4 = 0\)

b) \({x^2} – x = – 2x + 2\)

c) \(4{x^2} + 4x + 1 = {x^2}\)

d) \({x^2} – 5x + 6 = 0\)

Hướng dẫn:

a) \(\left( {{x^2} – 2x + 1} \right) – 4\)

⇔\({\left({x – 1} \right)^2} – 4 = 0\)

⇔\(\left({x – 1 – 2} \right)\left({x – 1 + 2} \right) = 0\)

⇔\(\left({x – 3} \right)\left({x + 1} \right) = 0\)

⇔\(\left[ {\ma trận{{x – 3 = 0} \cr {x + 1 = 0} \cr} } \right. \leftrightarrow \left[ { \matrix{{x = 3} \cr {x = – 1} \cr} } \yes.\)

Vậy tập nghiệm \(s = \left\{ {3; – 1} \right\}\) .

b) \({x^2} – x = – 2x + 2\)

⇔\(x\left({x – 1} \right) + 2\left({x – 1} \right) = 0\)

⇔\(\left[ {\ma trận{{x – 1 = 0} \cr {x + 2 = 0} \cr} \leftrightarrow \left[ {\ma trận{{ ) x = 1} \cr {x = – 2} \cr} } \right.} \right.\)

Vậy một tập hợp các nghiệm \(s = \left\{ {1; – 2} \right\}\).

c)\(4{x^2} + 4x + 1 = {x^2}\)

⇔\({\left( {2x + 1} \right)^2} = {x^2}\)

⇔\(\left( {2x + 1 – x} \right)\left( {2x + 1 + x} \right) = 0\)

⇔\(\left[ {\ma trận{{x + 1 = 0} \cr {3x + 1 = 0} \cr} } \right. \leftrightarrow \left[ { \ma trận{{x = – 1} \cr {x = {{ – 1} \trên 3}} \cr} } \right.\)

Vậy một tập hợp các nghiệm \(s = \left\{ { – 1;{{ – 1} \trên 3}} \right\}\)

d).\({x^2} – 5x + 6 = 0\)

⇔\({\left( {x – 2} \right)^2} – \left( {x – 2} \right) = 0\)

Xem Thêm : Địa điểm ghi dấu tội ác của Thực dân Pháp tại làng Minh Đán

⇔\(\left({x – 2} \right)\left({x – 3} \right) = 0\)

⇔\(\left[ {\ma trận{{x – 2 = 0} \cr {x – 3 = 0} \cr} \leftrightarrow \left[{\ma trận{{ ) x = 2} \cr {x = 3} \cr} } \right.} \right.\)

Vậy tập nghiệm s = {2;3}.

Lưu ý: Đa thức có thể được phân tích thành nhân tử theo nhiều cách khác nhau.

bài 25 trang 17 sgk toán 8 tập 2

Giải phương trình:

a) \(2{x^3} + 6{x^2} = {x^2} + 3x;\)

Xem Thêm: Kiến thức cơ bản các thể loại văn học lớp 12 – THPT Sóc Trăng

b) \(\left( {3x – 1} \right)\left( {{x^2} + 2} \right) = \left( {3x – 1} \ phải)\trái({7x – 10}\phải)\)

Hướng dẫn:

a) \(2{x^3} + 6{x^2} = {x^2} + 3x\)

⇔\(2{x^2}\left( {x + 3} \right) = x\left( {x + 3} \right)\)

⇔\(2{x^2}\left( {x + 3} \right) – x\left( {x + 3} \right) = 0\)

⇔\(\left[ {\ma trận{{x = 0} \cr {x + 3 = 0} \cr {2x – 1 = 0} \cr} \leftrightarrow \ left[ {\matrix{{x = 0} \cr {x = – 3} \cr {x = {1 \over 2}} \cr} } \right.} \right. )

Vậy một tập hợp các nghiệm \(s = \left\{ {0; – 3;{1 \trên 2}} \right\}\)

Xem Thêm: Kiến thức cơ bản các thể loại văn học lớp 12 – THPT Sóc Trăng

b) \(\left( {3x – 1} \right)\left( {{x^2} + 2} \right) = \left( {3x – 1} \ phải)\trái({7x – 10}\phải)\)

⇔\(\left( {3x – 1} \right)\left( {{x^2} + 2} \right) – \left( {3x – 1} \right )\left( {7x – 10} \right) = 0\)

⇔\(\left( {3x – 1} \right)\left( {{x^2} – 7x + 12} \right) = 0\)

⇔\(\left( {3x – 1} \right)\left( {{x^2} – 3x – 4x + 12} \right) = 0\)

⇔\(\left( {3x – 1} \right)\left[ {\left( {{x^2} – 3x} \right) – \left( {4x – 12} \right)} \right] = 0\)

⇔\(\left( {3x – 1} \right)\left[ {x\left( {x – 3} \right) – 4\left( {x – 3} \right)} \right] = 0\)

⇔\(\left({3x – 1} \right)\left({x – 3} \right)\left({x – 4} \right) = 0\ )

⇔\(\left[ {\ma trận{{3x – 1 = 0} \cr {x – 3 = 0} \cr {x – 4 = 0} \cr} \leftrightarrow \left[ {\ma trận{{x = {1 \trên 3}} \cr {x = 3} \cr {x = 4} \cr} } \right.} \right. \)

Vậy một tập hợp các nghiệm \(s = \left\{ {{1 \over 3};3;4} \right\}\)

Bài 26 trang 17 SGK Toán 8 tập 2

Trò chơi (chạy tiếp sức)

Chuẩn bị:

Giáo viên chia cả lớp thành n nhóm, mỗi nhóm 4 học sinh, mỗi nhóm có học sinh khá, học sinh khá, học sinh bình thường,… Mỗi nhóm tự đặt tên cho nhóm của mình, chẳng hạn nhóm “nhím”, nhóm “ốc nhồi”, nhóm “Thống nhất”,… mỗi nhóm HS tự đánh số thứ tự từ 1 đến 4. Vậy sẽ có n học sinh số 1, n học sinh số 2,…

Thầy soạn sẵn 4 đề toán giải phương trình được đánh số từ 1 đến 4. Mỗi câu hỏi được sao thành n bản, mỗi bản được cho vào một phong bì riêng. Như vậy sẽ có n câu toán 1, n câu toán 2, … các câu hỏi toán được chọn lọc theo nguyên tắc sau:

Tiêu đề 1 chứa x; Tiêu đề 2 chứa x và y; Tiêu đề 3 chứa y và z; Tiêu đề 4 chứa z và t. (xem tiêu đề mẫu đặt bên dưới).

Cách chơi:

Tùy tình hình cụ thể của lớp mà tổ chức cho từng nhóm học sinh ngồi thẳng, ngang hoặc xung quanh bàn

Giáo viên giao Chủ đề 1 cho Học sinh số 1, Chủ đề 2 cho Học sinh số 2 trong nhóm,…

Khi có hiệu lệnh, học sinh số 1 trong nhóm nhanh chóng mở bài toán 1, giải và chuyển giá trị x tìm được cho bạn số 2 trong nhóm mình. Khi nhận được giá trị của x, học sinh số 2 được phép mở bài toán, thay giá trị của x vào, giải phương trình tìm y và đưa đáp án cho bạn số 3 trong nhóm của mình. Học sinh số 3 làm tương tự… Học sinh số 4 chuyển giá trị t tìm được cho giáo viên (cũng là giám khảo).

Đội đầu tiên gửi câu trả lời đúng sẽ thắng.

Trò chơi (chạy tiếp sức)

Chuẩn bị:

Giáo viên chia cả lớp thành n nhóm, mỗi nhóm 4 học sinh, mỗi nhóm có học sinh khá, học sinh khá, học sinh bình thường,… Mỗi nhóm tự đặt tên cho nhóm của mình, chẳng hạn nhóm “nhím”, nhóm “ốc nhồi”, nhóm “Thống nhất”,… mỗi nhóm HS tự đánh số thứ tự từ 1 đến 4. Vậy sẽ có n học sinh số 1, n học sinh số 2,…

Thầy soạn sẵn 4 đề toán giải phương trình được đánh số từ 1 đến 4. Mỗi câu hỏi được sao thành n bản, mỗi bản được cho vào một phong bì riêng. Như vậy sẽ có n câu toán 1, n câu toán 2, … các câu hỏi toán được chọn lọc theo nguyên tắc sau:

Tiêu đề 1 chứa x; Tiêu đề 2 chứa x và y; Tiêu đề 3 chứa y và z; Tiêu đề 4 chứa z và t. (xem tiêu đề mẫu đặt bên dưới).

Cách chơi:

Tùy tình hình cụ thể của lớp mà tổ chức cho từng nhóm học sinh ngồi thẳng, ngang hoặc xung quanh bàn

Giáo viên giao Chủ đề 1 cho Học sinh số 1, Chủ đề 2 cho Học sinh số 2 trong nhóm,…

Khi có hiệu lệnh, học sinh số 1 trong nhóm nhanh chóng mở bài toán 1, giải và chuyển giá trị x tìm được cho bạn số 2 trong nhóm mình. Khi nhận được giá trị của x, học sinh số 2 được phép mở bài toán, thay giá trị của x vào, giải phương trình tìm y và đưa đáp án cho bạn số 3 trong nhóm của mình. Học sinh số 3 làm tương tự… Học sinh số 4 chuyển giá trị t tìm được cho giáo viên (cũng là giám khảo).

Đội đầu tiên gửi câu trả lời đúng sẽ thắng.

Câu 1: x = 2;

Tiêu đề 2: y =\({1 \trên 2}\) ;

Tiêu đề 3:\(z = {2 \trên 3};\)

Định đề 4: Với \(z = {2 \ trên 3}\), ta có: \({2 \ trên 3}\left( {{t^2} – 1} right) = {1 \ trên 3}\left( {{t^2} + t} \right)\)

⇔\(2\left( {{t^2} – 1} \right) = {t^2} + t \leftrightarrow 2\left( {t – 1} \right) \left({t + 1} \right) = t\left({t + 1} \right)\)

⇔\(2\left( {t – 1} \right)\left( {t + 1} \right) – t\left( {t + 1} \right) = 0\)

⇔\(\left( {t + 1} \right)\left( {t – 2} \right) = 0\)

⇔\(\left[ {\ma trận{{t + 1 = 0} \cr {t – 2 = 0} \cr} } \right. \leftrightarrow \left[ { \ma trận{{t = – 1} \cr {t = 2} \cr} } \yes.\)

Vì t=-1 (bị loại bỏ vì t>0)

Vậy t = 2

giaibaitap.me

Nguồn: https://anhvufood.vn
Danh mục: Giáo Dục